Photonic Quantum State Engineering in Silicon Nanophotonics: design, analysis, and optimization of scalable circuits for quantum information processing

BACKGROUND:

- Integrated nanophotonics allow for easy fabrication of scalable linear optical devices
- Our work is intended to find quantum advantages through careful analysis and design

• We collaborate closely with experimental and engineering teams in trying to realize practical quantum systems

METHODS:

- We model simple linear optical systems in an inherently scalable architecture using the methods of theoretical quantum optics
- We propose, design, and optimize photonic circuit elements for deployment in devices or gates for quantum information processing
- We use isometric (state-reductive) techniques associated with measurementinduced nonlinearities to generate quantum states needed for the function of these devices or gates

RESULTS:

Calculations imply probabilistic output of 3photon NOON state $\Box |3\rangle_{out,1} \otimes |0\rangle_{out,2} + |0\rangle_{out,1} \otimes |3\rangle_{out,2}$

P_{success}=1/6

INFORMATION INSTITUTE MISSION: Strengthen and expand information technology research, develop collaborative relationships, and increase research emphasis in areas of information technologies for the Information Directorate.

We emphasize two major recent results.

1)We have predicted further enhanced Hong-Ou-Mandel Manifolds (HOMM) from linear chains on non-identical, double-bus Micro-Ring Resonators (db-MRRs)

This, in turn, implies the possibility of designing a dynamically controllable, high visibility "switch" for path entangling two photons.

can (QIP)

RESEARCH LABORATORY AIR FORCE

 $\theta + 2\Delta\theta$

0.6

highly

Published in Phys Rev Research, May 2023

Peter L. Kaulfuss, A. Matthew Smith, Paul M. Alsing, EEHIII

Edwin E. Hach, III Associate Professor of Physics Rochester Institute of Technology